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Abstract
Deterministic sandpile models are studied on a cost optimized Barabási–Albert
(BA) scale-free network whose nodes are the sites of a square lattice. For
the optimized BA network, the sandpile model has the same critical behaviour
as the BTW sandpile, whereas for the un-optimized BA network the critical
behaviour is mean-field like.

PACS numbers: 05.65.+b, 05.70.Jk, 45.70.Ht

Various models of statistical mechanics which are usually studied on regular lattices have been
studied in recent years on graphs or networks of very complex structures. For example, the
Ising model has been studied both on the small-world networks (SWN) [1, 2] and on scale-free
networks (SFN) [3]. The phenomenon of percolation has also been studied on such networks
[4, 5]. In addition disease spreading models such as susceptible–infected–susceptible (SIS)
[6] have been studied on networks for spreading diseases in the society or the spreading of
viruses on the Internet.

Over the last few years it has been observed that the nodal degree distributions of many
real-world networks, e.g., World Wide Web [7] and the Internet [8] are characterized by power
law tails: P(k) ∼ k−γ (degree k of a node being the number of links attached to it). These
networks are called ‘scale-free networks’ [9–12] due to the absence of a characteristic value
for nodal degrees. Theoretically a number of graphs are generated to model SFNs. One
of them is by Barabási and Albert (BA) which has the following ingredients, namely: (i) a
network grows from an initial set of mo nodes with links connecting all mo nodes. At every
time step a new node is introduced and is randomly linked to m(<mo) distinct previous nodes.
(ii) Any of these m links introduced at time t connects a previous node i with an attachment
probability πi(t) which is linearly proportional to the degree ki(t) of the ith node at time t:
πi(t) ∝ ki(t). For BA model γ = 3 [9].

Sandpile models are the prototype models of self-organized criticality (SOC) [13–17]. In
these models, long-range correlations both in space and in time spontaneously emerge under a
self-organizing dynamics, in the absence of a fine tuning parameter. In its very general form,
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a sandpile model can be defined on an arbitrary connected graph, having a set of vertices
connected by another set of edges. An integer height variable hi representing the number of
grains in the sand column is associated with every vertex i of the graph. Starting from an
arbitrary initial sand height distribution the system is driven by adding unit grains of sand at
the randomly selected vertices hi → hi + 1. This sand column is said to be unstable when the
height hi exceeds a pre-assigned threshold value hc. An unstable sand column must topple
and in a toppling it loses some grains which are distributed among the neighbouring sites [13].
This creates an avalanche of sand column topplings and the strength of such activity measures
the size of the avalanche. There must be some ‘sinks’, i.e., a set of vertices through which
grains flow out of the system so that in the steady state the balance of fluxes of inflow and
outflow currents is maintained.

In this letter, we have studied the deterministic sandpile model on a scale-free network
placed on an Euclidean substrate, namely a square lattice. The motivation of this study is
to acquire support for the validity of our recent conjecture [18] that in a sandpile model the
precise balance at all lattice sites (except on the boundary) between the number of outflowing
grains Hi which are distributed among the neighbouring sites in a toppling at the site i and
the number of inflowing grains H ′

i received by the site i when its all neighbouring sites topple
once ensures that the sandpile model behaves like the BTW model [13] with a multiscaling
avalanche size distribution. The absence of the site-to-site balance of Hi = H ′

i leads to the
behaviour of Manna sandpile [14]. Below we define and study the sandpile model on the
SFN where Hi is equal to the degree ki of the SFN and therefore is an extremely fluctuating
quantity. In spite of that the equality Hi = H ′

i is maintained by construction. We see below
that the sandpile model on the optimized SFN indeed behaves like the BTW model.

Recently, BTW sandpile model has been studied on a static model of SFN [19]. In
contrast to the usual sandpile models there are no specific sinks at fixed positions. Instead,
during a toppling any grain can evaporate from the system from any arbitrary node with a
small probability f . The distribution of avalanche sizes (s) which do not dissipate (i.e., grains
do not evaporate in these avalanches) is:

Prob(s) ∼ s−τ exp(−s/sc) (1)

where the cut-off of the avalanche size sc ∼ 1/f . It is to be noted that the cut-off size does
not depend on the network size N but only on the dissipation rate.

To claim that a dynamical process active in a system is self-organized critical, it is
important to ensure that both long-range spatial and temporal correlations dynamically evolve
in this system. For the ordinary BTW or Manna sandpiles on systems of spatial extension
L this is verified in the following ways: (i) the avalanche size distribution has a power-law
distribution Prob(s, L) ∼ s−τ for some intermediate range and this range should increase
with the system size as the cut-off of the avalanche size distribution increases as sc(L) ∼ LD .
(ii) The average size of the avalanches increases with the system size L, 〈s(L)〉 ∼ Lν and
ν = 2 since the grains while executing a diffusive motion have to travel distances of the order
of L to go out of the system through sinks situated on the boundary. Non-zero values of ν and
D indicate that system has avalanches of all length scales and the process is indeed critical.

If a sandpile is grown in a closed system (i.e., a system which has no sinks and grains do not
evaporate from this system) the system eventually reaches a state when an ‘infinite avalanche’
which continues for ever and never stops. Now, if a slow dissipation rate is introduced like
every 1/f topplings one grain is dissipated from any arbitrary site of the system, there is no
infinite avalanche, the system indeed reaches a stationary state, but the avalanche sizes are
no more of all length scales. This is because the large avalanches lose their strengths by
dissipation of grains.
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For a network or a graph in general, there is no concept of space, only the connections
by links between the nodes. One can still define a distance between an arbitrary pair of nodes
on a network measured by the number of links on the shortest path connecting the two points.
The largest of all possible shortest paths is called the diameter of the network. A small world
network has the diameter varying logarithmically with the number of nodes: D(N) ∝ log N .
Since scale-free networks are small world networks, it is difficult to observe long-range spatial
correlations in sandpile model on SFNs.

Here we study the sandpile model on a SFN constructed on a square lattice of size L×L.
We first construct a BA SFN of N = L2 nodes. The network starts growing with an initial
set of mo = (m + 1) nodes. Each of these nodes is linked to all other m nodes forming a
(m + 1)-clique. After that new nodes are added to the network one by one and each such
node is connected to m randomly selected distinct nodes of the already grown network with
probability πi(t). This process stops when the network size has grown to L2 nodes. In our
calculation we use m = 2, therefore our network has L2 nodes, 2L2 −3 links among the nodes
and has many loops. The nodes of the network are then assigned randomly with uniform
probability the sites of the square lattice. If two nodes are linked, the corresponding lattice
sites are connected by straight lines. Thus we place the BA SFN on the square lattice.

Clearly the degree distribution of such an Euclidean SFN is exactly the same as that of
the BA SFN. To study the sandpile model we assume that each site (except for sites on the
boundary) has a site dependent critical height hc

i of stability which is equal to the degree
ki of the node at that site. Therefore in a toppling, the sand height at site i is reduced to:
hi → hi −hc

i and in a deterministic toppling dynamics like BTW model, all the ki neighbours
receive one grain each. The outlet of the system is at the boundary. Therefore every boundary
site (except the corner sites) has the threshold heights hc

i = ki + 1. This implies that in a
toppling at the boundary site one grain goes out of the system and never comes back. Similarly
at the corner sites the threshold heights are hc

i = ki + 2. Such mechanism of outflow of grains
through the boundary sites guarantees that the sandpile dynamics on the Euclidean SFN must
reach a stationary state.

In this Euclidean SFN any site is connected to any other site with equal probability
and therefore the average link length 〈�ij 〉 is large and of the order of the system size L. In a
toppling the grains therefore jump large distances on the average. We first study a deterministic
sandpile model on such a network. In this sandpile model a grain jumps a distance around L
in a toppling. Consequently, the spatial extent of all avalanches, small or big, is around L.

The avalanche size is measured in two ways: (i) the total number of topplings s and the
number of distinct sites toppled a. A power-law distribution of the avalanche sizes with a
simple finite size scaling implies that the distribution function Prob(s, L) obeys the following
scaling form:

Prob(s, L) ∼ L−βf
( s

LD

)
, (2)

where the scaling function f (x) ∼ x−τ in the limit of x → 0 giving τ = β/D, τ and D
are the exponents of the avalanche size distribution. One immediate way to check validity of
equation (1) is to attempt a data collapse by plotting Lβ Prob versus s/LD with trial values of
the exponents. It is now well known in the literature that for the Manna stochastic sandpile
model the distribution obeys FSS with τManna ≈ 1.28 where as for the BTW sandpile the
probability distribution Prob(s, L) of this measure has been found recently to obey a multi-
scaling ansatz [22, 23]. In figure 1 we plot the scaling of the avalanche size distribution data
for the BTW sandpile on the un-optimized BA SFN on the square lattice for L = 256, 512
and 1024. The best collapse works for D = 2 and β = 3.2, giving τ un-opt = β/D = 1.6. The
stochastic Manna sandpile is also studied on the un-optimized BA SFN on the square lattice
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Figure 1. Scaling of the probability distribution of avalanche sizes for the BTW model on the
un-optimized SFN for different system sizes: L = 256, 512 and 1024. The data collapse gives
the values of the scaling exponents D = 2 and β = 3.2 giving the avalanche size exponent
τ un-opt = 1.6.

for system sizes upto L = 1024 again. We estimated D = 2 and β = 3.0 giving τ un-opt =
1.5. We believe that τ un-opt for both the BTW and Manna sandpiles on the un-optimized BA
SFNs are indeed mean-field like and both the exponents should be actually 1.5. Similar slight
deviation from 1.5 was also observed in [19] for the deterministic case. It is also observed
that the area a has a similar distribution.

Recently a cost-optimized SFN on Euclidean space has been constructed [20], where the
total sum of the link lengths is optimized keeping the nodal degree distribution exactly same
as that of the original SFN. For such a construction one defines a cost function C(N) as the
total wiring length in terms of the symmetric adjacency matrix A of size N × N (which has
elements aij = 1 if there is a link between the pair of nodes i and j and 0 otherwise) and
the distance �ij between nodes i and j as C(N) = �i>jaij �ij . The optimization process is
essentially a rewiring process maintaining the nodal degree distribution intact. It starts with
a BA SFN constructed on a square lattice as mentioned above. A pair of distinct links of the
SFN is chosen whose nodes are not linked otherwise. One end of each link is then opened and
rewired suitably to another node of the quartet so that total sum of the rewired length is smaller.
More precisely, the first node n1 is randomly selected from the set of N nodes and the second
node n2 is randomly selected from the k1 neighbours of n1. In the same way n3( �= n1 �= n2)

is selected randomly from N nodes and n4( �= n1 �= n2) is chosen from k3 neighbours of n3.
Clearly this move conserves the link numbers as well as degree distribution. Rewiring is done
following this decision: if both n1n3 and n2n4 are not linked and also �12 + �34 is greater than
�13 + �24 we link n1n3 and n2n4. Another possibility is if n1n4 and n2n3 are not linked but
�12 + �34 is greater than �14 + �23 then we link n1n4 and n2n3. If both cases are possible we
accept one of them with probability 1/2. If only one is satisfied we accept that. After rewiring
we remove the links n1n2 and n2n4. If none of the two is satisfied we go for a fresh trial. On
repeated trials of these moves the cost function gradually decreases. Initially it decreases very
fast but eventually the success rate becomes very slow. To monitor the optimization process
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Figure 2. A cost-optimized Barabási–Albert scale-free network on a square lattice of size L = 64.
The SFN of N = L2 nodes is generated by usual BA algorithm whose nodes are randomly assigned
lattice sites. The cost function C (the total wiring length) is then minimized by a large number of
trials as described in the text keeping the nodal degree distribution intact. Large degree nodes are
visible.

10
–5

10
–4

10
–3

10
–2

10
–1

10
0

10
1

sL
–2

10
–5

10
–4

10
–3

10
–2

10
–1

10
0

10
1

10
2

10
3

10
4

10
5

P
ro

b(
s,

L
)L

2.
4

Figure 3. Scaling of data for the probability distribution of avalanche sizes for the BTW model
on optimized SFN and for different system sizes: L = 32, 64 and 128. The data collapse gives the
values of the scaling exponents D = 2 and β = 2.4 giving the avalanche size exponent τopt ≈ 1.2.

we kept track of the average link length. Our best possible effort yields the average link length
〈�ij 〉 ≈ 1.75 lattice constant. A picture of the optimized network is given in figure 2. In
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Figure 4. Comparison of the BTW model on ordinary square lattice (solid line) and the BTW
model on the optimized SFN on square lattice (dotted line): (a) the moment exponents σ(q) versus
q and (b) dσ(q)/dq versus q.

this best possible optimized network the link lengths � have an exponential distribution as:
D(�) ∼ exp(−g�) with g ≈ 1.16. Also the diameter of the network D(N) is measured and
is observed to grow as Nµ where µ is estimated to be 0.40 ± 0.02. Therefore this network is
scale-free but not a small-world network.

The deterministic BTW sandpile model is then studied on such a network. The avalanche
size distribution is calculated for three different system sizes L = 32, 64 and 128. It was
difficult to go beyond this size because of the large optimization times required. First we
tried to make a scaling plot of the size distribution data. In figure 3 we show this plot, which
shows reasonably well collapse of the data in the intermediate range of the avalanche sizes.
The corresponding β and D values fitted are 2.4 and 2 respectively giving a possible value of
τopt ≈ 1.2. However for large avalanche sizes the collapse is much worse and the data for
different system sizes separate out. This is a typical behaviour of the BTW like models which
show strong presence of the multiscaling behaviour [22, 23].

The multiscaling behaviour is studied in more detail by the evaluation of the various
moments of the avalanche size probability distribution. The qth moment of the distribution is
defined as 〈sq〉 = ∫

sq Prob(s, L) ds. In case the distribution Prob(s, L) obeys the finite size
scaling behaviour for the whole range of avalanche sizes, it can be shown that 〈sq〉 ∼ Lσ(q)

where σ(q) = D(q − τ + 1) for q > τ −1 and σ(q) = 0 for 0 < q < τ −1. The q-dependent
exponent σ(q) is determined from the slope of the plot of log〈sq(L)〉 with log L, which in
our case are for L = 32, 64 and 128. The interval between successive q values is 0.02 and
moments are calculated at 251 values of q between 0 and 5. In figure 4(a) we show a plot
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of σ(q) versus q on a linear scale. In figure 4(b) the derivative of σ(q) is plotted with q.
Had the Prob(s, L) followed a simple FSS behaviour the dσ(q)/dq in figure 4(b) would have
saturated for large q values. Instead, the curve gradually increases with q, very similar to
the multiscaling behaviour of BTW model. To compare we plot both σ(q) and dσ(q)/dq of
the ordinary BTW on square lattice studied for same system sizes with different line styles.
We see that in both plots the behaviour is very similar and the difference between the two
curves is very small, within 2–3%.

The stochastic Manna sandpile is also studied on the optimized SFNs for small system
sizes L = 32, 64 and 128. The scaling exponents are estimated as D = 2.62 and β = 3.4
giving τopt ≈ 1.3. This value of τ is compared with the corresponding τ ≈ 1.28 value of the
ordinary Manna sandpile.

To summarize, we studied the BTW sandpile model on a Barabási–Albert scale-free
network of N = L2 nodes where the nodes are the sites of a square lattice of size L. The
SFN is then optimized minimizing the total wiring length but keeping the degree distribution
intact. On such an optimized SFN on the Euclidean space we observe that the sandpile model
has the same scaling behaviour as the BTW model whereas the deterministic sandpile on the
un-optimized SFN has a mean-field-like behaviour.
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